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OPERATOR VALUED FUNCTIONS AND BOUNDARY VALUE PROBLEMS

FOR THE HELMHOLTZ EQUATION. I. SPHERICAL GEOMETRIES.

1. Introduction.

Let Q be an open, connected region in E3 that has a smooth

closed, bounded boundary 3. We denote by { the closure of )

where 0 = Q v 3Q.

A number of boundary value problems of mathematical physics

reduce to requiring solutions of the Helmholtz equation.

w o= (v24k®w = £, k%> 0 (1.1)
defined in the region Q@ and which are required to satisfy certain

boundary conditions denoted typically by (bc).

It can be shown that the problem of solving the boundary value
problem

IWw=f, we (bc) (1.2)

can be reduced to that of solving a boundary integral equation of

the form
(I-K)u = g (1.3)

"

. where K 1is a linear integral operator mapping H(3Q) = H, a

Hilbert épace of functions defined on 930, into itself, I denotes
the identity operator on H whilst u and g are respectively

unknown and known elements of H.
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Strictly, the operator K 1in (1.3) depends on the parameter
k appearing in (1.1) and we should in consequence regard K as
an operator valued function of k. It will be our intention to
make explicit this aspect of the boundary integral operator K. !

Specifically, we consider here the equation

AKu = u, A e @ (1.4)

and in this and subsequent communications we shall concern ourselves

with the following problems.

(i) The determination of o (K), the spectrum of K.

(ii) The determination of the variation of o (K)

with k.

I
I+
(=
.

(iii) A discussion of the significance of the values A

2. A particular case; spherical geometry.

The exterior Neumann problem for the Helmholtz equation can be
reduced to a study of the boundary integral equation (Kleinman and
Roach, 1974]

(I-K)w = g (2.1)

dere K : LZ(BQ) > Lz(an) is a linear operator defined by

(Ku) (p) = I u(q) E"Y—'(pvQ)dS ' P,gq € 3 (2.2)
20 anp q




where
y(P,Q = -e**R/2mr, R = R(P,Q), P,Q € @,

%H~ + ﬁp . vp
P

~

and np is the inward drawn unit vector normal to 3R erected

at p e 90 .

We consider the equation (2.1) in the particular case when Q is
the unbounded region exterior to a sphere of radius a. Two
situations present themselves; k = 0 and k # 0, we treat each

in turn.

2(a). k = 0, expression for eigenvalues.

In this case the full form of (2.1) is

A
w(p) - 3 Jm w(q) %r;;[-lﬁ]dsq =g, R=R(pq (2.3)

The expansion of 1/R in terms of complete sets or function is well
known (c.f. Magnus and Oberhettinger, 1949, which hereinafter we

refer to as M.O). Specifically

: = e T * P, (cos 0) (2.4)
n=0 r>n -
p = p(rp’ep'¢p)' q = q(rq'eqr¢q)
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cosO_ := s O:= O cos 6 + sin 6 _ sin 6 _ cos - 2.
b co cos - o - q o (¢p ¢q) (2.5)
r, := min(rp,rq), r, 1% max(rp,rq) (2.6)
Consequently
( n-1
3 1 © nr
55—(§] " Z T E,lcos 8, rp < Tq
P n=0 r
) q
2 N (2.7)
= fA Lo (o
Z (n+1) 25 P (cos @), r, ® Ty
(| n=0 r
P
When rp = rq =a [i.e. both points on the surface 23Q] and allowing

for approaching from D_, the inside or D+ the outside,of 23Q, we

take the mean of the two results in (2.7) and obtain

-4

. Pn(cos 0)

T

to be interpreted as a distribution on Lz(aﬂ). The homogeneous form

of (2.3), in full form, can now be written.

S L - T g
w(p) - 5r Jodeq JO d¢qa sin 6q{~ = nZoPn(cos 0)} w(q) =0
or
A o b4 27
w(p) + 7= nZO fodeq Io d¢q sin eq P_(cos 0)w(q) = 0 (2.8)

Solutions of this equation can be found in terms of the spherical

harmonics:

o




i
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m m :
Y (6,¢) := P _(cos O)cos mp , e > even in ¢
n,e n
m m . :
Y (6,¢) := P _(cos 6)sinmp , O = odd in )
n,0 n

where P:(cos 0) is the n-th associated Legendre function of order

m. The system {Ym ,Ym } is known to be complete for n > 0,
n,e’" n,0 -
m<n on LZ((O,n)x(O,Zn)) = LZ(BQ) [c.f. M.O. and Smirnov, Vol.

IV, 1964]. If in (2.8) we set:

_ o m
w(p) = Yn’e(e ) (2.9)

p'q’P

and similarly for w(q) then (2.8) becomes:

o n 2m -
de d sin 6 _ P 0)Y 0 =0
220 Jo . JO 6q Sin 0, P (cos 0)Y, (8. ,¢.)

o>
=

m
Y o0 00 +
0

This double integral can be evaluated by the orthogonality proper-

ties of the spherical harmonics [M.O. p. 55] and we obtain

m A 47 m -3
Yn,e(ep'¢p) T fﬁziyn,e(ep'¢p) -
0 0

]
o

m A
Yn,e‘ep'¢p) {1 + woIT }
0

Consequently from 2.10 we see that the eigenvalues of (2.3) are the
scalars

}\n = —(2n+1) (2-11)

and An is an eigenvalue of (2.3) of multiplicity 2n+l when
n > 0. This follows because for fixed n we have n eigenfunctions
Yg, 0 <m < n for the even situation and 1 < m < n for the odd;

hence multiplicity 2n+l.
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Eigenvalue distribution: An(k)
k=0

2. (b) k # 0, expression for eigenvalues.

In the case k # 0 the homogeneous form of equation (2.1)

becomes

w(p)- 7FJBQW(q) 5%— {% dSq = 0. (2.12)
P

Using known expansions [M.O. p. 21] we have for this case

e1kR = ik E (2n+1)j_(kr_)h_ 1) (kr )p_(cos o (2.13)
R - e el r>)Py ) 3
where
z_(x) = /§; Zney 2 (%) (2.14)

and zn represents either jn the spherical Bessel function

or hél) the spherical Hankel function of the first kind while

Z represents the cylindrical counterparts.




Proceeding as before we differentiate (2.13) with respect to
np, obtain expressions for p tending to 23Q from inside and

outside 0392 then add and finally divide by 2 to obtain:

(1) (1)

3 fiEH)  apd T ; ;
anp[ R ]" 3 n£0(2n+l){ﬂn(ka)hn (ka)+3n(ka)hn (ka)}pn(cos 0)
(2.15)
Substituting (2.15) into (2.12) we obtain:
O 2 2. ik2 e . (1)
w(p)- 5r Jodeqjg¢qw(q)a 51n9q _7-££é2n+1){3n(ka)hn (ka) +

+ jﬁ(ka)hél)(ka)}Pn(cos g} = 0.

If we now interchange the order of integration and abbreviate the

integrand in an obvious way then we obtain:

. 2 » m 2m
_ Ai(ka) PN - | PR :
w(p) -—3?_——h£0(2n+1){3nhn +3 h }JodeqL)d¢q51n9an(cos 0)w(qg)
= 0. (2.16)
As before set
w(p) = yﬂ,s(ep'¢p) (2.17)

and employ the associated orthogonality properties [(M.O. p. 55]

to obtain

A 2 LSS IR DA ¥ S
Y':'S(Gpnbp)- 77 (ka) (2n+1){3nhn e L }{m Y',':,g} = 0.

This implies that




———

m E &L A o
A (ep,¢p){1 L & 0 St S 1} =0

and consequently we deduce that

1
3 (2.18)
n i(ka)zljn'h£1)+jnhé1)']

which is an eigenvalue of (2.12) of multiplicity 2n+1(n>0).

Now it can be shown [Abramowitz and Stequn, 1964] that the
Wronskian is given by

: (1) (1) . (1) i
w o= L} - ] -
an,h n )¢ Jnhn 2 1 hn (ka)2

Hence (2.18) can be rewritten in the form:

rrae: e e
B L) ® i/(ka)2+2jn'hél)
or

1

% - (2.19)
n -1+2i(ka)2jn'h£IT

(1)

. (ka)

where it is to be understood that jn'hél) = j;(ka)h
and ' denotes differention with respect to the argument. Here
the eigenvalues An are dependent on the value of k.
Consequently we would expect that as k = 0 we would recover the
eigenvalue spectrum obtained in the previous section. That this
is indeed the case can be seen by means of the following asymptotic
analysis. From [M.0, p. 22) we have the expansions:

hit)(z) = 4~P-1 gif § (-ym (n+l £in] (2.20)

m=0 (2iz)

. _ A (2T cn™(zz2) 2"
M e [I]mz mIT (n+m+3/2) (2.21)




where

and

(n

-0
(-1)™ (n+1) (-n)
+1/2,m) = — o -
. = [(v+m)
(Ve = P

consequently (2.20) can be written in asymptotic form (for small

z) as

nL) )

iz

= 4T et BH/20) (140 (y))

o

(2iz)

iz
I —ESHIT(n+1/2,n)[l+O(z)] (2.22)
2z

and we can deduce that

n{(z) -

Similarly we

i, (2)

and

s
i, (z)
Consequently

RTITR §
Ip(2ny (2)

—(§;i)£$;1/2.n)eiz o e (2.23)
1 V4

obtain

3 [%Jn szt 0" e
Y nz"1 +1

. + 0(2"
n+l T (n+3/2) =

) (2.25)

{n'/"—r ' zn"l +0 (zn+l)}{elz_£n+l[;Ln) [1+0 (Z) ]}

2" 1 (n+3/2) jan o+l
[anz“‘l+0(z"+1)1{bneiz/z“+1[1+0(z)1}

eiz
a b s (140 (2) ] (2.26)




=] 0=
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where an and bn are defined in an obvious manner.

Setting
S e A n;z{n+l/2,n) - - 1 g;f{n+l/249) (2.27)
R BB T3 0140 =0 I'(n+3/2)
and )
z = ka ,
we find on using (2.26),(2.27) that (2.19) can be written in
the form
- L (2.28)
n g el
-1+2iz {cn—;7[1+0(2)]}
A= L
T -l42ic_e 4o (z) e
In order that this result (2.29) should agree with (2.11) we
must have
3 _ 2n
21cn g (2.30)

That this is indeed the case can be seen as follows. From the

definition of (n+l/2,m) and (2.27) we obtain

: n
& ny/7(n+1/2,m) = At (/2] (=1 (n+1)n(_n)n

2n

2ic n
2°°T(n+3/2) 2 nil'(n+3/2)

n

and since

2n
n

»13™ k - & I'(n+l/2)
(-1) (n+1)n( n)n I‘(2n+l) 2 —rzm)—

we find that

2is » nr(1l/2)r(n+1/2) _ n
n F(1/2)T (n+3/2) n+l/2

as required.
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For large values of 2z it follows from (2.20) and the fact that
(n+1/2,0) = 1, that for the spherical Hankel function of the
first kind,

_ :=n-1 eiz
= i e (1+0(1/2))

hél)(z)
and

(1) _ -n.ei?
hn (z) = i s (1+0(1/2)).

Similarly, for the spherical Hankel function of the second kind

we have that

-iz
B3 ) = g ELE & T oz,
n A
Hence
3@ = 5[0 @ (2]
" %;[i—n-leiz+in+le—iz)(1+0(l/z))
and :
jn(z)hél) tah - ;i—z[i'z"*lez”u}(1+0(1/z)).

Therefore, from (21.9) and the definition of the Wronskian it

follows that

1

v by
Jnhn

1+Ziz2

{1+ [(-1)“e2“-1] [_1+o (l/z)] }-l :

Consequently, the asymptotic form of the eigenvalues for large

values of z 1is

n -2iz
An (=1) e

[1+0(1/z)]). (2.31)

The results of numerical calculations of these eigenvalues
and their reciprocals are plotted in Appendix II. The first

eleven eigenvalues (equ. 2.18) are shown as functions of ka




.

illustrating how the asymptotic behavior (equs. 2.29 and 2.31

for low and high frequencies respectively) is approached.

3. On the polar decomposition of K.

The results of the previous section indicate that as k
varies the eigenvalues of K become complex. Furtherﬁore, as k
increases the modulus of the eigenvalues tends to unity. This
suggests that K should be decomposable either as the sum or pro-
duct of operators, one of which is unitary, in order to be able to

exploit the behaviour of the eigenvalues of K for large k.

One way of effecting such a decomposition is afforded in the
so-called polar decomposition of operators [Naylor and Sell, 1971].
Specifically, given a linear, normal operator K: H+H, where H
is a separable Hilbert space then there exists a unique decompo-
sitican of K in the form

K = UR = RU (3.1)

where R: H*H 1is a positive, self-adjoint, linear operator and

U: H+H 1is a unitary operator.

Now the boundary integral equations in which we are interested

have the typical form
(I-AK)w =g € H, A € ¢ . (3.2)

Therefore, if K 1is normal then (3.2) can be rewritten either

in the form
1

(U"=AR)w=§ , g = U§ (3.3)
or as
RI-at)w=§, g=Rrj (3.4)
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Consequently in the light of the results of the previous

sections we are led to make the following conjectures.

Kl. As z:= ka*e then K+U therefore R+tI and R 1o+I
where I 1is the identity on H. Consequently, the high
frequency behavior of the required solutions to (3.2) is
determined from the solutions of the equation

(I-AU)w_=g_, w_ = lim Rw = *limw , g = lim g (3.5)

Z+o Z > ko

where this equation has been obtained from (3.2) and (3.4)

in the limit as 2z-o,

K2. As z: ka»0 , K becomes self adjoint therefore U-+*I
and U-l*tI. Consequently, the low frequency behavior
of the required solution to (3.2) is determined from the
solutions of the equation
(I—)\R)wo b FHR S lim Uw = 1lim w , . lim g (3.6)
z+0 z+0 k~+0
where the equation has been obtained from (3.4) in the

limit as - z+0.

The Spectral Theorem (Naylor and Sell, 1971) states that if
K:H*H is a compact, normal operator then there exists a resolution
of the identity {En} and a sequence of complex numbers {un},

such that

K = r{‘ TR o (3.7)

where the convergence in (3.7) is understood to be in terms of

the uniform operator norm topology.
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{En} is a resolution of the identity provided

(i) En are orthogonal projections, i.e., E_ = E_ = E;

and R(En)lN(En)

(ii) EnEm =0, n#m

]
~

(i) J B
n

In the case under consideration, M and En may be

determined from 2.12, 2.15, 2.18 to be

W = A;l N izz{jé(z)hél)(z)+jn(z)hél)'(z)} (3.8)
2n+1 (7 Iz" ;

T e 3.9

En( ) T Jodeq 4 d¢q51n6an(cosOp,q)( ) ( )

The well-known properties of the spherical harmonics (M.0. p. 55)

enable one to verify that (i)-(iii) are fulfilled.

In general, provided lun| # 0, and since the En are

orthogonal projections, we can write

" = 80 . (3.10)

K = IZ) ann = g‘; lpn’En 3‘; ]Jmll.lm -

Now, any operator K which can be written in the form (3.7) is
called a weighted sum of projections. Therefore the operators

R and U appearing in (3.8) and defined by

|"le (3.11)

R:= ; lun|Eq » Ut g L n

are both weighted sums of projections and R is self-adjoint
since the weights are real (IunlsR). Furthermore, by first

recalling the properties of the resolution of the identity,




=2 B

elementary manipulation shows that y is unitary. Therefore
(3.10) provides the required polar decomposition of K. We are
now in a position to examine the conjectures K1 and K2 if we

recall the asymptotic estimates obtained in the previous sections,

namely
-(2n+l) + 0(2z) ., for small 2z and fixed n.
An(z) e n -2iz
(-1) e + 0(1/2) , for small 2z and fixed n.
Consequently
-3 :
o e i N o) (1+0(z)) for small 2z and fixed n,
L a n 2iz

(-1)"e [140(1/z)] for large z and fixed n

i

(3.12)
and we obtain by direct substitution of these quantities into
(3.11
iy nzoIun|En B n£0 iﬁ- Jaan(cos i el lighuich
= -I(140(1/2) for large z . (3.13)
U=] unlunl_lnn = - nzo ::::+1) Janp“(cos Opq) (+18841140(2))
= =I(140(z)) for small =z . (3.14)

4. Conclusion,

In this note we have begun an investigation into both the
theoretical and practical consequences of treating certain
commonly occuring operators of mathematical physics as operator

valued functions of a parameter.

As a first consideration of this problem we have confined

our attention to boundary value problems associated with the
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Helmholtz equation in the particular case of spherical symmetry.
We have seen that when 23Q 1is a sphere then equation (l1.4) can
be solved analytically. Consequently a number of quantities which
are known to depend upon a certain parameter can be computed
directly and so the dependence can be exhibited. Specifically,
we have seen that as k varies,the eigenvalues of K become
complex. Furthermore we have seen that as k increases the
modulus of each eigenvalue tends to unity. This suggests that

K should be decomposable as the product of operators, one of
which is unitary, in order to exploit the behavior of the eigen-
values of K for large k. This decomposition was explicitly
exhibited for the spherical boundary. Promising as this appears
at first sight, it turns out not to be a very practical proposi-
tion in general, since its implementation requires an intimate
knowledge of all the eigenvalues and eigenvectors of K. Further-
more such polar decomposition of K 1is only conveniently
available for compact normal operators and while it can be shown
(Appendix I) that K is normal for spherical geometries, this
may not be true in general. Nevertheless we shall show in
subsequent communications that there are factorization methods
which do offer good practical prospects especially if instead of

K attempts are made to factorize (I-K) ~, the resolvent of K.

Finally we remark that the equation whose solution is sought,
(2.1), has obvious difficulties for those values of ka for
which An(ka)=1, where An(ka) are the eigenvalues of equ. 1.4.
To show that such critical values do occur in the spherical
example treated here, the quantity IAn(ka)-ll is plotted as

functions of ka for 0 < n < 10 in Appendix II.
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Appendix I. Concerning the normality of boundary integral

oEerators.

On L2(BQ) we define the inner product

(u,v) = J u(p)vaSdSp ; pedn (Al1.1)
N

where dSp denotes an element of area of the surface 230 taken

with respect to the coordinates of a point p € 3 Q.

We introduce an integral operator K: L, (3Q)~ Lz(aQ)
defined by

(Ku) (p) : = J 3y (p,q) u(q)ds_ , p,g€ 3 Q (A1.2)
an 9

where the kernel of this operator is generated hy Y (P,Q),
P, Q € @, a function 'of position in § = QU3R. The domain
functional is conveniently taken to be the fundamental solution of
the associated partial differential equation. 1In this example,
in which we are considering the Helmholtz equation, we take

ikR

b eV . ol
Y(P,Q)= -5 ., R:=|Pd| , P,QeT . (Al1.3)

The adjoint of K is obtained by considering

(Ku,v) = J (Ku) (p)v(p)ds
N P
P
= J J %;I— (p.q)u(q)dsq v(p)ds
20,20, “Tp P

Y —
- u(q) J = (p,q)v(p)ds_tds
Jan pp "W Pl 9

L}
3
=

*
<
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where
0%
(K*v) (q) : = j 5%* (p,q)vip)ds_ . (Al.4)
a0 p P
In order to investigate the normality of the operator K we

examine the properties of

S: = K*K - KK* (Al1.5)

Substituting for K and K* in Al-5 we obtain

& 3y _i_

(su) (p) = I I u(q) ———(r.q)———(r.p) —(p,r (gq,r) pds_ds
an_Jaq L Ny e e
; (A1.6)

Consequently
ppa): = | 13,03 (r,p) -2 (p,1) I (q,r) fas_ = 0 (aL.7)
Q r Ny Np q .
)

is a necessary and sufficient condition for thé_nbrmality of K.

To see that Al.7 is satisfied for the Helmholtz equation

and 09Q a sphere we first write (2.15) in the form

—(p,q) = £ Pn(a)Pn(cos Opq)== EOFn(a)Pn(P,q) (A1.7)
where F_(a) = ig- (2n+1) 13 (ka)h (P (ka)+ 531 (kayn!t) (ka) 1.

Substituting Al.7 into Al.6 yields

D(p,q) = I { I F ()P (r,q) 2 F (a)p_(r,p)
anr n=0 m=0

e nzan(a)Pn(p,r)mzopm(a)pm(q,r)}ds
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oo

Iy Lr @R |

n=0 m=0

- {Pn(r,q)Pm(r,p)—Pn(p.r)Pm(q,r)}dSr
r

e — 4
nzan(a)Fn (a) m {Pn(P:Q)‘Pn(th)}

= 0.

Hence for the particular case of the Helmholtz equation and
a spherical surface the boundary integral operator

K: Lz(aQ) -+ Lz(an) is normal.

f

e tuit ]
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Appendix II. Numerical results.

Equation (2.19) defines An explicitly as

1

%
—l+2i(ka)2jr'1(ka)hgl) (ka)

n

.

To illustrate the behavior of the eigenvalues as functions
of ka, An is plotted as a function of ka for 0 < n < 10
and 0 < ka < 10 in Figures 1-11. Notice that the asymptotic
behavior for small and large ka is evident although for the
larger values of n, values of ka greater than 10 are
required before the asymptotic approximation is reasonable. 1In
Figures 1-6, 8, 10 and 11, the horizontal and vertical scales
are different so extra care is urged in interpreting these graphs.

The reciprocal eigenvalues Wy = %— are plotted in Figs. 12-22.
n
The advantage in plotting in this way is that the u, are

bounded and the same scale can be employed for all.

Since the equation to be solved is

(I-2k)w = £

with A = 1, it is of interest to observe how close this value
of 1 is to an eigenvalue. To exhibit this the quantity
lxn(ka)-ll is plotted as a function of ka for 0 < n < 10

and 0 < ka < 10 in Figures 23-33.
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